Multi-Cloud Architecture: Lessons from Working with AWS, GCP, and Azure
Over 7 years, I’ve built production systems on all three major cloud providers: AWS, Google Cloud Platform (GCP), and Microsoft Azure. Each has strengths and weaknesses. Here’s what I learned about when to use each, and how to navigate a multi-cloud world.
Cloud Provider Strengths
AWS: The Everything Store
Best for: Mature services, enterprise features, broadest service catalog
Standout services:
- Lambda + API Gateway: Best-in-class serverless
- S3: Industry standard object storage
- RDS: Managed databases with every option
- IAM: Most granular permission model
Use AWS when: You need battle-tested services, deep integrations, or enterprise compliance
GCP: AI/ML First
Best for: AI/ML workloads, modern data analytics, Kubernetes
Standout services:
- Vertex AI: Best managed AI/ML platform
- BigQuery: Unmatched data warehouse performance
- GKE: Best managed Kubernetes
- Cloud Functions: Excellent cold start times
Use GCP when: AI/ML is core to your product, or you’re building data-intensive applications
Azure: Enterprise Integration
Best for: Microsoft ecosystem, hybrid cloud, enterprise apps
Standout services:
- Active Directory integration: Seamless enterprise auth
- Azure Functions: .NET serverless done right
- SignalR Service: Managed real-time communication
- Cosmos DB: Global multi-master database
Use Azure when: You’re in the Microsoft ecosystem, need hybrid cloud, or building enterprise SaaS
Real-World Multi-Cloud Architecture
At Easygenerator, we use all three:
┌──────────────────────────────────────────────────┐
│ User Traffic │
└─────────┬────────────────────────────────────────┘
│
↓
┌─────────────────────────────────────────────────┐
│ AWS CloudFront (CDN - Global) │
│ - Edge caching │
│ - DDoS protection │
└─────────┬───────────────────────────────────────┘
│
↓
┌─────────────────────────────────────────────────┐
│ AWS (Core Application) │
│ ┌─────────────────────────────────────────┐ │
│ │ • API Gateway + Lambda (API) │ │
│ │ • RDS PostgreSQL (Data) │ │
│ │ • S3 (Media Storage) │ │
│ │ • ElastiCache Redis (Sessions) │ │
│ │ • SQS + EventBridge (Messaging) │ │
│ └─────────────────────────────────────────┘ │
└────────┬────────────────────────────────────────┘
│
└──────┬──────────────────┬──────────────
│ │
↓ ↓
┌──────────────────┐ ┌───────────────────┐
│ GCP (AI/ML) │ │ Azure (Legacy) │
│ │ │ │
│ • Vertex AI │ │ • SignalR Service │
│ • Speech API │ │ • Blob Storage │
│ • Gemini │ │ │
└──────────────────┘ └───────────────────┘
Why multi-cloud?
- Best-of-breed: Use GCP’s AI where it excels
- Migration: Gradual migration from Azure to AWS
- Risk mitigation: Not locked into single vendor
- Regional presence: Different providers better in different regions
Patterns for Multi-Cloud
1. Data Synchronization
Challenge: Keep data consistent across clouds
Solution: Event-driven replication
// AWS Lambda: Sync to GCP when data changes
export async function handleDynamoDBStream(event: DynamoDBStreamEvent) {
for (const record of event.Records) {
if (record.eventName === 'INSERT' || record.eventName === 'MODIFY') {
const item = record.dynamodb?.NewImage;
// Sync to GCP Firestore
await replicateToGCP(item);
}
}
}
async function replicateToGCP(data: any) {
const { Firestore } = require('@google-cloud/firestore');
const firestore = new Firestore();
await firestore.collection('users').doc(data.id).set(data);
}2. Cross-Cloud Authentication
Challenge: Single sign-on across clouds
Solution: JWT tokens + JWKS
// AWS Lambda authorizer
export async function authorize(event: APIGatewayAuthorizerEvent) {
const token = event.authorizationToken?.replace('Bearer ', '');
// Verify JWT (works with Cognito, Auth0, Azure AD)
const decoded = await verifyJWT(token, {
jwksUri: process.env.JWKS_URI, // Works with any provider
});
return generatePolicy(decoded.sub, 'Allow', event.methodArn);
}
// GCP Cloud Function uses same JWT
export async function gcpFunction(req: Request, res: Response) {
const token = req.headers.authorization?.replace('Bearer ', '');
const decoded = await verifyJWT(token, {
jwksUri: process.env.JWKS_URI, // Same JWKS endpoint
});
// Use decoded.sub as user ID
}3. Multi-Cloud Monitoring
Challenge: Unified observability
Solution: Centralized logging and metrics
// Use DataDog / New Relic / Grafana Cloud for unified monitoring
import { Logger } from '@datadog/datadog-logging';
const logger = new Logger({
apiKey: process.env.DATADOG_API_KEY,
service: 'api',
env: process.env.ENVIRONMENT,
tags: {
cloud: 'aws', // or 'gcp' or 'azure'
},
});
// Works identically on all clouds
logger.info('User signed in', { userId: '123', cloud: 'aws' });Cost Comparison (Real Data)
For our workload (50K MAU, API-heavy SaaS):
| Service | AWS | GCP | Azure |
|---|---|---|---|
| Compute (serverless) | $120 | $95 | $110 |
| Database (managed) | $85 | $110 | $95 |
| Storage (object) | $45 | $50 | $48 |
| CDN | $35 | $30 | $40 |
| Monitoring | $25 | $20 | $28 |
| Total/month | $310 | $305 | $321 |
Takeaway: Pricing is similar. Choose based on features, not cost alone.
When to Choose Each Cloud
Choose AWS when:
✅ Need widest service selection ✅ Startups (credits, ecosystem) ✅ Require most mature enterprise features ✅ Want largest community and resources
Choose GCP when:
✅ AI/ML is core to your product ✅ Data analytics and BigQuery workflows ✅ Need best Kubernetes experience ✅ Want simpler pricing models
Choose Azure when:
✅ Microsoft shop (.NET, Active Directory) ✅ Need hybrid cloud (on-prem + cloud) ✅ Selling to enterprises (they’re often Azure) ✅ Want tight Office 365 integration
Multi-Cloud Anti-Patterns
❌ Don’t: Split single application across clouds
Latency kills performance. Keep tightly coupled services in same cloud.
❌ Don’t: Use proprietary services everywhere
Use open standards (Postgres not DynamoDB, Kubernetes not ECS) if portability matters.
❌ Don’t: Over-abstract
Building cloud-agnostic layers costs engineering time. Only abstract if you’ll actually switch.
❌ Don’t: Ignore data transfer costs
Cross-cloud data transfer is expensive ($0.12/GB+). Keep data close to compute.
Multi-Cloud Best Practices
✅ Do: Use infrastructure as code
Terraform works across all clouds. CloudFormation/ARM/Deployment Manager lock you in.
# Terraform: One language, all clouds
provider "aws" {
region = "us-east-1"
}
provider "google" {
project = "my-project"
region = "us-central1"
}
resource "aws_s3_bucket" "media" {
bucket = "media-bucket"
}
resource "google_storage_bucket" "ai_data" {
name = "ai-data-bucket"
location = "US"
}✅ Do: Centralize secrets management
Use Vault, AWS Secrets Manager (cross-cloud), or Parameter Store.
✅ Do: Plan for egress costs
Data leaving a cloud is expensive. Cache at edge, process in-cloud.
✅ Do: Use managed services
Don’t run your own Postgres/Redis/etc. Use RDS, Cloud SQL, or Azure Database.
My Recommendations
Starting a new project? → Choose one cloud. Multi-cloud adds complexity you don’t need early on. → Pick based on your team’s expertise and workload (AI → GCP, Enterprise → Azure, General → AWS)
Growing startup? → Stick with one cloud until you have clear reasons to expand → Use open standards (Postgres, Redis, Kubernetes) for future flexibility
Established company? → Multi-cloud makes sense for best-of-breed services → Keep blast radius small: use secondary cloud for specific workloads (AI, analytics) → Invest in automation (Terraform, unified monitoring)
Key Takeaways
- All three clouds are excellent: Choose based on workload, not hype
- Multi-cloud adds complexity: Only do it for good reasons
- AWS is Swiss Army knife: Broadest services, best for general-purpose
- GCP excels at AI/ML: Best choice for data-intensive and AI workloads
- Azure owns enterprise: If selling to corporations, Azure is an advantage
- Use IaC: Terraform enables multi-cloud without pain
- Centralize observability: DataDog/New Relic across all clouds
Navigating multi-cloud architecture? I’d love to discuss trade-offs and strategies. Connect on LinkedIn.